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ABSTRACT

Testing of location parameter is very important and is useful in many fields like agri-
culture, medical, social, economic etc. When the data does not follow the Normal
distribution, the nonparametric tests are more robust and powerful than parametric
tests. To address this problem, a new class of test statistic is proposed in this paper
which is independent of any distribution. The proposed test is compared with ex-
isting nonparametric two sample location tests in the literature, using Pitman and
Bahadur asymptotic relative efficiency for some underlying distributions. Optimum
choice of sub-sample size is found so that asymptotic relative efficiency is maxi-
mized. A real life data example is provided to see the working of the proposed test.
A Monte-Carlo simulation study is also applied to find power and level of significance
of the proposed test.
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1. Introduction

Let X7, Xo, ..., X,, and Y7, Yo, ..., Y}, be the independent random samples of size
n and m from two populations with absolutely continuous cumulative distribution
functions F(z) and F(x — A), respectively, and A is called the shift parameter. If
A > 0 then it means the Y’s are stochastically greater than the X’s and if A < 0
then it means Y’s are stochastically smaller than the X’s. Now our motive is to test
the null hypothesis:

H() A= 0,
against the alternative hypothesis

HlA?éO
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In this paper, to test such a problem, no parametric model assumptions are assumed
regarding the F'(.).

In many real life situations, it is very important to test the equality of location
parameters. For example, in the field of agriculture, if a researcher wants to test that
two fertilizers have the same effect on the yield of a crop or not. In the field of medical,
if a researcher wants to test out of two different drugs that they have equal effects
to control the blood pressure level of human beings. When the data is not Normal,
the most familiar non-parametric tests are given by [1] and [2], which was further
generalized by the authors of [3]. Paper [4] considered the test statistic based on sub-
sample median. In papers [5] and [6], the proposed test is based on order statistics.
Authors of [7] developed the test statistic based on sub-sample mid range. In paper
[8], the proposed test is based on sub-sample extremes and in paper [9], proposed test
is based on minimum and median of the sub-samples.

The proposed class of U-statistics is defined in section 2. Its distribution is estab-
lished in section 3. Comparisons of the proposed with some of the existing tests and
optimum choice of sub-sample size are given in section 4. To test if the type of behavior
has significant effect on cholesterol level or not, an illustrative example is provided in
section 5. In section 6, a simulation study is carried out to see the performance of the
proposed test.

2. Proposed Class of Tests

Let c¢,d,iandj be the fixed positive integer such that 2 < (¢,d) < min(n,m),
c+1>2iand d+1 > 25. Now we define the following kernel:

@(X17X27"‘7X6;}/17}/27"'7Yd) =
_ {1 it X;.. < ij:d and X¢ 1.0 < Yd—j—i—l:d

0 otherwise,

where X;.. and Yj.4 are the ith and jth order statistic from the sub-samples (X7, Xa,
..., Xc) and (Y1,Ys,...,Yy) respectively. Similarly, X.—ij11.c and Yg_ji1.4 are (c —
i+ 1) and (d — j + 1) order statistic from the sub-samples (X1, Xa,..., X,.) and
(Y1,Ys, ..., Yy) respectively.
The U-statistics associated with the kernel ®(.) is defined as:

Uedii = [ SI®(Xuvss Xuwgs -+ » Xuoni Yars Yoy o+, V)]

where the summation is extended over all possible combinations (wi,ws, ... ,w.)
of ¢ integers chosen from (1,...,n) and all possible combinations (z1, 22, ... ,24) of d
integers chosen from (1,...,m).

In particular, when ¢ = d =i = j = 1, the test statistic U, q; ; is same as that given
by authors of [1] and [2].
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3. The Distribution of Test Statistic

The expectation of U, q; ; is:
E(Ueaig) = (D] S EI®(Xu, Xugs - s Xu; Yy, Yaus o, Yo,
= P[Xi.c <Yjgand Xe iy1.c < Ya_jy1.d)
—f f PXj.c <tand Xe_jq1:.c < v]dP[Yjq < tandYg_ji1.4 < vl
Under the null hypothesis Hy, the expectation of U, 4 ; ; is:

(e)!(d)! r4j—1
/ / >y (s — e~ s)d —2iG — Dz - )

0 s=c—i+1r= 1

< (F(v) — F(£))*F4r=2(1 — F(t)) st~ 1dF (t)dF (v).

After mathematical calculations, expectation of U, q;; under the null hypothesis
reduces to

s d+572j77“) (chjfsfl) (r+j71)

d—2j j—1 T
EHO c,d,i z,] E E

s=c—i+1 r=i (CJcrd)

The result of asymptotic distribution of U-statistic is given in [10]. Using this
result, we find the asymptotic distribution of proposed test statistic in the following
theorem.

Theorem 1: Let N = n+m. The asymptotic distribution of VN[U. q; — E(Uca,i )],
as N — oo in such a way that & — A and 0 < A <1 is Normal with mean zero and
variance 02(Uc,d,z,])7

A 1-X
where
10 = B[(®(x0, X2, ..., Xe; Y1, Y2, .., Ya))?] = [E(Uea,ig))?,
and
fo1 = E[(®(X1, Xa, ., Xei 90, Vo, -, Ya)*) = [B(Ueaig)]s
with

P(zg, Xo,..., Xe; Y1, Yo, Yy) =

= E[‘I’(Xl,XQ, N ,Xc;Yl,Yé, .. .,Yd)|X1 = xo],
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and
(I)(Xl,XQ, e ,Xc;yo,YQ, . ,Yd) =
= E[CI)(Xl,XQ, “e 7Xc;}/1,Y27 Ce ,Yd)‘Yl = yo].

Under Hj, asymptotic null variance of the test statistic, U%(Ucydyi’j), after some
computation is found as:

BVats) = G etis
where
Vedij= {112’ . forc=d=1
A+B+C+D+E+F —(En,(Ucd,j))” fored>2,
with,

s d+s—r—2jctj—2—s

) dl(c — 1))(~1)+a
A= Z > Z Z G 1= G =Dt + )

s=c—i+1 r=t

“(d—2))! (d+18—J+q+1) <d+5—p7“—29'> <C+j;2_s>>’

c—i c+d—r—i—2j i+j—2 c—i c+d—p—i—2j i+j—2

(d!(c o 1!))2(_1)m+l+w+z
B = ; 2 Z pZ; wZ::U g plrl(c—i—r)l(c—i—p)((7 —1))?

- <<d—2j>!>;<r+j+l> (Hi_Q) (H%]%_ 2) (Hd_rz_i_%)

(c+d—€v—i—2j) <1 1

>< —
(c+d+z—i—7+1)((7—DH* c+d+z—i—j+2

1 1
_c+d+m—i—j+2+26+2d+m+z—2i—2j+3>

1
X )
(ctd+m—i—j+1)(p+j+w)
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c—1 d+s—i—2j+1c+j—s—2 +l—i—2j+1 c+j—1-2 C—l 1)p+q+m+w
C =
i

c—i d
Z Z Z Z 571+1 (cflfs)!

s=c— q=0

(A s—i= 2T\ (Al =i =2+ 1 (et 12
P m w

(d!)2(0+j;s—2)
G000 — i+ Dlile—1- DG — DDA - 2)D2( - D)

1 1
X(p+i+j—1)(m+i+j—1){([(d+s+q—j+1)(d+l+w—j+1)

1 1
x |1— - - -
[ d+s+q—j+2 d+l+w—j+2

1 1
+ . - . .
2d+s+l+q+w—2j+3]> <[(d+s+q—z—2j—p+2)

1 1 1
X J— J—
(d—i-l—i-w—j—l—l)] [H—j—i—p d+l+w+i+p+1

1 1
- . + 4
d+s+q—j+2 2d+s+l+q+w—2y+3]>

1 1
_<{(d+s+q—j+1)(d+l+w—z’—2j—m+2)} L'—i—j—l—m_

1 1 1
. - . + .
d+s+q+i+m+1 d+l4+w—j5+2 2d+s+l+q+w—2j+3]>

1
+ - - - : X
([(d—i—l—l—w—z—Qj—m+2)(d+s+q—z—2]—p+2)]

1 1 1
[2i+2j+p+m—1 Cd4l+twHitp+l d+s+qtitm+1
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1
* 2d+s+l+q+w—2j+3]>}’

D= i 8 d+sigjc+§_s<d+sr2j><cﬂ28) 2(d!)*(c — 1)!

s=c—i+1 r=1 p=0 q=0 p q
y (=1)p*e >
s —r\(c—1—s)(G—=N2(d=2)p+r+5i)(d+s—j+q+1)

cHd—r—i—2ji+j—2 ct+d—r—i—2j\ (i+j—2 —1)pta 1
« Z Z ( : l )( m )( ) 1— : : ,
o L (4 jtl)etd+m—i—j+1) " ctdtm—i—j+2

. i s d+§‘2jc+j . S<d+s—r—2]><c+j—2—s>(£!c(8—_1)r!))!2

p q

2((d)* (-1 )
(= 1= )G~ DY@ =202 +r+ 1)~ Did+s—j+a+1)

c—1 dts—i—2j+1c+j—s—2 (d+s i—2j+1) (c+j—s—2)(_1)p+q
p q

. Z Z Z it D e—1-9)G-—D2prit] 1)

1 1 1
X . 1- _ - . .
[d+s+q—j+1{ d+8+q—]+2} d+s+q—i1—2j—p+2

1 1
X - )
\rer T

and
c—i c+d—r—i—25i+j—2 c—1 d+s—i—2j+1c+j—s—2 I+p+
2 c—l))( 1)m+pq
F =
r=i m=0 s=c—1i q=
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(z’JrTjnf2) (c+dfrlfi72j) (C+j;872) (d+sfi;2j+1)

Ot jrDletdim—i—j+1)i-Dls—i+ ) -1

1

1 ptitj -+ +0(d-2))N2

1 1 1
X 1-— —
<[d+3+q—j+1{ ctd+m—i—j+2 d+s+qg—j+2

1 1 1
+ - - - : - —
c+2d+m+s+q—z—2j+3H d+s+q—z—2j—p+2[z+]—p

1 1 1
- - - + . . .
d+s+q—7+2 c+d+m+p+1 c+2d+m+s+q—z—2‘7+3}>

Now, we found the value of expectation and variance of U, 4; ; under null hypothesis
for some values of ¢, d,iand j given in Table 1.

Table 1. Expectation and Variance of U, 4,; ; under null hypothesis without A
Cdi) | @25 | @350 | G211 | GaLL) | GALL) | (43,11) | (44L1) | (4,4,2,.2)
Eo(Uc.d,ij) 0.3333 0.3000 0.3000 0.3000 0.2857 0.2857 0.2857 0.3714
02Uc,dij) 0.1206 0.1273 0.1273 0.1467 0.1566 0.1566 0.1740 0.2496

4. Asymptotic Relative Efficiency

Asymptotic relative efficiency (ARE) describes that how well one test performs relative
to another test with increase or decrease in sample and sub-sample sizes. In this section,
we compare the proposed test with other tests using asymptotic relative efficiencies
as Pitman asymptotic relative efficiency and Bahadur asymptotic relative efficiency.
The comparisons are given in subsections 4.1 and 4.2, using Pitman and Bahadur
asymptotic relative efficiency, respectively.

4.1. Pitman Asymptotic Relative Efficiency

In this section, Pitman efficacy of the U.gq;; test is calculated and compared with
relative tests in the terms of Pitman asymptotic relative efficiency (ARE). The limiting
efficacy of the test U, 4;; under local alternatives Ay = % is given as:

2 g [B(Uedi)|An = 0]
e"(Uecd,ij) = lim 2 —
N—roo NUO (UC,d,Z,j )

135



Asian Journal of Statistical Sciences A. Kumar®, M. Goyal’ and N. Kumar®

Forc=d=1,

T [EWeai)lay =0 = VN [~ ()P,

and for ¢,d > 2,
dav [BUeaij)|An = 0] =
s S—r c—s

VAR cld!(=1)PH9(F(y) — F(x))4=% (F(z))i~!
:m/_oo/_oo 2 220 ri(s — r)l(c—9)!(j — DI(d — 2j)!

s=c—i+1 r=i p=0 ¢q=0

<((F () P (r4p) (F ()P~ f(2)+(F ()P (s —r—p+q) (F()) 7 f(y))

() ) Pyt sedsan

Now, we found the Pitman asymptotic relative efficacy for all choices of ¢, d, 7 and
J with maximum value of ¢ = d = 10 accordingly with condition to the value of ¢ and
j. The value of ¢, d,i and j which gives the maximum value of Pitman efficacy for all
the considered distributions is the optimum choice of sub-sample size. Column two in
Table 2 gives such optimal choice of sub-sample size. Using the optimum sub-sample
size, we compare the proposed test with test given by [1] and [2] named as (WMW),
test given by [4] and named as (kK,,), test given by [7] and named as (OZ, ). Table 2
comprises the Pitman ARE of the proposed test with optimum sub-sample size.

Table 2. Pitman ARE of U, 4; ; test with respect to different tests

Distribution Optimum Tests
sub-sample K OZr s
size ¢,d,i,j | WMW | m=1 | m=2 m =3 r,s=13 | rs=23|rs=3,3
Uniform 10,10,1,1 6.500 11.058 | 12.798 13.775 5.293 4.271 3.531
U-quadratic 10,10,1,1 15.646 | 51.074 | 81.793 | 109.450 10.705 7.361 5.383
Beta(1,2) 6,10,1,1 5.393 8.500 9.677 10.342 4.520 3.756 3.187
Beta(2,2) 10,10,1,1 1.713 2.167 2.361 2.476 1.573 1.443 1.345
Normal 3,3,1,1 1.032 1.129 1.184 1.221 1.010 0.997 1.000
Cauchy 10,10,5,5 1.403 1.117 1.042 1.011 1.589 1.903 2.343
Exponential 4,10,1,1 7.775 13.228 | 15.309 16.477 6.331 5.110 4.224
Gumbel 2,5,1,1 1.266 1.416 1.495 1.546 1.227 1.198 1.187
Logistic 1,1,1,1 1.000 1.029 1.059 1.081 1.005 1.027 1.065
Rayleigh 4,10,1,1 1.421 1.676 1.792 1.863 1.345 1.277 1.230

From Table 2, it can be observed that proposed test with optimum choice of sub-
sample sizes performs better than (WAMW) test for all the considered distributions
except for Logistic distribution. The proposed test always performs better than ()
test when we used optimum sub-sample sizes of the proposed test. The proposed test
with optimum choice of sub-sample sizes performs better than (OZ, 5) test except for
Normal distribution.
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4.2. Bahadur Asymptotic Relative Efficiency

The approximate Bahadur slope of the test statistics U4 ; is given by

1

OWeaid) = a3

[E(Uedij) — Ery(Ueaig))®

Bahadur asymptotic efficiency of U, 4; ; with respect to WMW is given by

B(Uecd,ij) = S(UCW,
(WMW)

Similarly, one can find Bahadur asymptotic efficiency for other tests also. We found
the asymptotic relative efficacy for fixed value of A(shift) = 0.01, 0.05and 0.1 and for
all the choice of ¢,d,7 and j with maximum value of ¢ = d = 10 accordingly with
condition to the value of ¢ and j. The value of ¢,d, 7 and j which gives the maximum
value of Bahadur efficacy for all the considered distributions is the optimum choice of
sub-sample size. Column two in Tables 3, 4 and 5 give the optimal choice of sub-sample
size. Now, using the optimum sub-sample size, we compare the performance of the
proposed test with respect to relative competitors of two sample location problem in
terms of the Bahadur asymptotic relative efficiency. Namely, we compare the proposed
test with test given by [1] and [2] named as (WMW), test given by [4] and named as
(Kpm), test given by [7] and named as (OZ, 5). Tables 3, 4 and 5 comprise the Bahadur
ARE of the proposed test with optimum sub-sample size.

Table 3. Bahadur ARE of U, 4,;,; test with respect to different tests when A(shift) = 0.01

Distribution Optimum Tests
sub-sample K OZ s
size ¢, d,i,7 | WMW m=1 m =2 m=3 r,s=13 | rs=2,3 | r,s=3,3
Uniform 10,10,1,1 7.151 12.170 14.084 15.162 5.823 4.699 3.885
U-quadratic 10,10,1,1 20.228 66.296 106.062 | 141.916 13.841 9.507 6.939
Beta(1,2) 5,10,1,1 5.161 8.020 9.131 9.761 4.327 3.633 3.124
Beta(2,2) 10,10,1,1 150.269 | 190.123 | 207.215 | 217.761 5.568 5.144 4.814
Normal 3,3,1,1 1.037 1.135 1.191 1.228 1.015 1.003 1.006
Cauchy 10,5,5,1 10.287 8.188 7.643 7.413 11.648 13.954 17.178
Exponential 4,10,1,1 7.573 12.759 14.765 15.892 6.167 5.010 4.176
Gumbel 10,10,1,1 1.274 1.425 1.505 1.556 1.234 1.205 1.195
Logistic 1,1,1,1 1.000 2.550 1.059 1.081 1.006 1.027 1.065
Rayleigh 4,10,1,1 1.447 1.707 1.825 1.897 1.368 1.299 1.252

Table 4. Bahadur ARE of U, 4 ; ; test with respect to different tests when A(shift)= 0.05

Distribution Optimum Tests
sub-sample Km OZr s
size ¢, d,i,7 | WMW m=1 m =2 m =3 rs=1,3|rs=231]rs=3,3
Uniform 10,10,1,1 10.556 14.190 21.809 22.525 8.596 6.937 5.719
U-quadratic 10,10,1,1 73.617 | 266.680 | 412.904 | 552.978 13.354 54.522 158.352
Beta(1,2) 10,2,1,1 5.135 7.642 8.731 9.385 4.085 3.638 3.179
Beta(2,2) 10,10,1,1 6.059 7.672 8.455 8.931 3.834 3.915 3.772
Normal 3,3,1,1 1.060 3.586 2.282 1.935 1.037 1.025 1.028
Cauchy 10,5,5,1 2.217 18.346 7.362 4.846 2.510 3.008 3.703
Exponential 2,10,1,1 7.103 11.551 13.360 14.387 6.061 4.978 4.151
Gumbel 10,10,1,1 1.309 1.465 1.547 1.601 1.274 1.243 1.228
Logistic 2,2,1,1 1.006 1.035 1.065 1.088 1.033 1.033 1.071
Rayleigh 4,10,1,1 1.547 1.826 1.955 2.035 1.457 1.386 1.341
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Table 5. Bahadur ARE of U, 4, ; test with respect to different tests when A(shift)= 0.1

Distribution Optimum Tests
sub-sample K OZr,s
size ¢,d,i,j7 | WMW m=1 m =2 m=3 rs=131| rs=23|rs=3,3
Uniform 10,10,1,1 17.430 18.979 42.414 36.820 14.193 11.454 9.365
U-quadratic 10,10,1,1 514.977 | 2721.105 | 3326.484 | 4801.519 44.724 145.877 306.929
Beta(1,2) 5,10,1,1 11.373 16.423 19.067 20.846 8.372 8.039 7.255
Beta(2,2) 10,10,5,1 5.975 7.437 8.620 9.333 2.732 3.062 3.053
Normal 3,3,1,1 1.087 3.489 2.251 1.925 1.063 1.052 1.055
Cauchy 10,5,5,1 1.680 13.058 5.269 3.483 1.901 2.279 2.806
Exponential 7,10,2,1 7.290 11.433 13.213 14.252 6.483 5.427 4.566
Gumbel 10,10,1,1 1.353 1.515 1.602 1.659 1.320 1.288 1.271
Logistic 2,21,1 1.017 1.047 1.078 1.102 1.022 1.044 1.083
Rayleigh 10,10,5,1 1.786 2114 2.270 2.371 1.673 1.508 1.554

From the Tables 3, 4 and 5, it can be observed that the proposed test using optimum
sub-sample size always performs better than (WMW) (k;,) and (OZ, ;) tests in terms
of Bahadur asymptotic relative efficiency.

5. A Real Life Example

To see the execution of proposed test, we worked out the test on two different real life
examples as given in subsections 5.1 and 5.2.

5.1. Exzample Based on Effect of Behavior Type on Cholesterol Level

In California, a study is carried out where middle-aged men’s were investigated to
study the relationship between behavior pattern and the risk of coronary heart disease
[11]. The particular data were obtained for the 40 heaviest men in the study (all
weighing at least 225 pounds) and record cholesterol measurements (mg per 100 ml),
and behavior type on a twofold categorization. In general terms, type A behavior is
characterized by urgency, aggression and ambition, where as type B behavior is relaxed,
non-competitive and less hurried. The question of interest is to test that cholesterol
level is same or not in two different types of behavior for heavy middle-aged men’s.

Let Hy : Cholesterol levels in both behaviors’ are same for heavy middle-aged men’s.

Vs

H; : Cholesterol levels in both behaviors’ are not same for heavy middle-aged men’s.

Using Kolmogorov-Smirnov test, we see that data set follows the Cauchy distribu-
tion so the optimal choice of the sub-sample size from Table 2 is ¢ = d = 10 and
t=j=0>5.

We find test statistic of this data set as: Uig,10,55 = 0.9689 and the corresponding
P-value = 0.0079. As the P-value is less than 0.05 (at 5%level of significance) so the
null hypothesis is rejected. This implies that cholesterol levels in both behaviors’ are
not same for heavy middle-aged men’s.

5.2. Example Based on Effect of Neuroleptic Treatment on Dopamine
B-Hydroxylase

The relationship of Dopamine S-hydroxylase activity (DBH) in the cerebrospinal fluid
(CSF) and responsiveness to neuroleptic treatment is examined by [12]. To test such a
problem they divided the patients in two groups i.e. 15 patients who became nonpsy-
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chotic after chronic treatment with antipsychotic medication compared and the 10
patients who remained psychotic after treatment. Now,

Let Hy : Dopamine §-hydroxylase activity (DBH) in the cerebrospinal fluid (CSF)
is same for both groups of patients. Vs

H; : Dopamine f-hydroxylase activity (DBH) in the cerebrospinal fluid (CSF) is
not same for both groups of patients.

Using Kolmogorov-Smirnov test, we see that data set follows the Uniform distri-
bution so the optimal choice of the sub-sample size from Table 2 is ¢ = d = 10 and
i=75=1.

We find test statistic of this data set as: Ujg,10,1,1 = 1.00 and the corresponding
P-value = 0.0006. As the P-value is less than 0.05 (at 5% level of significance) so the
null hypothesis is rejected. This implies that Dopamine -hydroxylase activity (DBH)
in the cerebrospinal fluid (CSF) is not same for both the group of patients.

6. Simulation Study

In this section, Monte Carlo simulation study is carried out to estimate power and level
of significance using different sample sizes. Ten thousands random samples of sizes
10(10)30 from two Normal distributed populations are generated. The power of the
proposed test is computed for Normal distribution at 5% and 1% level of significance.
The estimated power (shift > 0) and level of significance (shift =0) of the proposed
test with optimum choice of sub-sample size is given in Tables 6 and 7.

Table 6. Estimated power and level of significance of U, 4,; ; at 5% level of significance

Sample Optimum Sub-sample size: (¢, d, i, 7)=(3,3,1,1)

size n,m | Shift=0 | Shift=0.25 | Shift=0.5 | Shift=0.75 | Shift=1 [ Shift=1.25 [ Shift=1.5
10,10 0.054 0.136 0.284 0.473 0.665 0.820 0.916
10,20 0.052 0.148 0.327 0.556 0.768 0.915 0.967
10,30 0.046 0.150 0.351 0.605 0.816 0.935 0.970
20,20 0.050 0.168 0.417 0.701 0.900 0.980 0.980
20,30 0.050 0.187 0.466 0.765 0.942 0.983 0.989
30,30 0.050 0.203 0.543 0.845 0.978 0.998 0.999

Table 7. Estimated power and level of significance of U, 4,; ; at 1% level of significance

Sample Optimum Sub-sample size: (c,d, 1, j)=(3,3,1,1)

size n,m | Shift=0 | Shift=0.25 | Shift=0.5 | Shift=0.75 | Shift=1 [ Shift=1.25 | Shift=1.5
10,10 0.020 0.060 0.150 0.288 0.472 0.655 0.817
10,20 0.014 0.060 0.182 0.373 0.580 0.780 0.914
10,30 0.015 0.069 0.193 0.399 0.636 0.844 0.946
20,20 0.012 0.059 0.231 0.512 0.770 0.926 0.966
20,30 0.010 0.081 0.282 0.587 0.867 0.974 0.980
30,30 0.010 0.106 0.335 0.678 0.915 0.989 0.997

The following observations can be made from the Tables 6 and 7:

(i) From Table 6, it can be observed that at 5% level of significance, reasonable
power of the proposed test is achieved at n = 10 and m = 20. While from Table 7, it
can be seen that at 1% level of significance, reasonable power of the proposed test is
achieved at n = 30 and m = 30. As the sample size increases power of the proposed
test also increases.

(ii) When the sample size n = m = 30, we achieved the estimated level of significance
of the proposed test that is 5% and 1% as given in Tables 6 and 7, respectively.
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